## AC FUNDAMENTALS

## Contents

- Alternating Current
-Sinusoidal Alternating Quantity
- Average and RMS Value
-Peak and Form Factor
-AC Circuit
-Purely resistive circuit
-Purely inductive circuit
-Purely capacitive circuit
-AC Series Circuits
-R-L Series Circuit
-R-C Series Circuit
-R-L - C Series Circuit
-Resonance
-Resonance In Series
-Resonance Frequency


## What is A.C. and D.C.

- In Alternating current, movement of electric charge periodically reverses its direction.

- Whereas in DC , flow of electric charge is only in one direction.



## Why we use A.C. in homes

- AC voltage is capable of converting voltage levels just with use of transformers.
- To transmit AC over a long distance, voltage is stepped up to 400 KV at generating stations and stepped down at a low level, $400 / 230 \mathrm{~V}$ for household and commercial utilization.
- AC motors are simple in construction, more efficient and robust as compared to DC motors


## Sinusoidal Alternating Quantity

Alternating quantity that varies according to $\sin$ of angle $\theta$.

The instantaneous value of a sine-wave voltage for any angle of rotation is expressed in the formula:
$\mathrm{V}=\mathrm{V}_{\mathrm{m}} \sin \theta$
$\theta$ is the angle
$\mathrm{V}_{\mathrm{m}}=$ the maximum voltage value
$\mathrm{V}=$ the instantaneous value of voltage at angle $\theta$.

## Terms to know

- Cycle
- When an Alternating qty goes through complete set of positive and negative values
- Goes through 360 electrical degrees.
- Alternation
- One half cycle
- Time Period
- Time taken to complete one cycle by AC.
- Frequency
- No of cycle made per second.

- Amplitude
- Maximum value attained by an alternating quantity in one cycle
- Also called Peak Value / Max. Value


## Expressing Alternating Quantaties

- In AC system, alternating current and voltage varies from instant to instant.
- Three ways to express
- Peak Value
- Average Value
- RMS value



## Average Value

- Average value of whole sinusoidal waveform over one complete cycle is zero as two halves cancel each other out.
- So average value is taken over half a cycle and taken as 0.637 times peak value.

The alternating current varying sinusoidally is given by
$\mathrm{I}=I_{m} \sin \theta$
Consider an elementary strip of thickness $\mathrm{d} \theta$ in the + ive half cycle, i be its mid ordinates.
Thus, Area of strip $=\mathrm{id} \theta$
Area of half cycle $=\int_{0}^{\pi} i d \theta=\int_{0}^{\pi} I_{m} \sin \theta d \theta$
$=I_{m}(-\cos \theta)_{0}^{\pi}$
$=I_{m}\{-(\cos \pi-\cos 0)\}$
$=2 I_{m}$
Average Value $I_{a v}=\frac{\text { Area of alternation }}{\text { Base }}$ $=\frac{2 I_{m}}{\pi}=0.637 I_{m}$


## R.M.S. Value

- Root mean square value is effective value of varying voltage or current.
- It is equivalent steady DC value that gives the same effect.
- Two methods of finding RMS value
- Graphical Method
- Analytical Method



## R.M.S. Value

An alternating current is given by
$I=I_{m} \operatorname{Sin} \theta$
Area of strip $=i^{2} \mathrm{~d} \theta$
Area of squared wave in first half cycle
$\int_{0}^{\pi} i^{2} \mathrm{~d} \theta=\int_{0}^{\pi}\left(I_{m} \operatorname{Sin} \theta\right)^{2} \mathrm{~d} \theta$
$=I_{\mathrm{m}}{ }^{2} \int_{0}^{\pi} \sin ^{2} \theta \cdot \mathrm{~d} \theta=I_{\mathrm{m}}^{2} \int_{0}^{\pi}\left(\frac{1-\cos 2 \theta}{2}\right) \mathrm{d} \theta$
$=\frac{1}{2} I_{m}^{2} \int_{0}^{\pi}(1-\cos 2 \theta) \cdot d \theta=\frac{1}{2} I_{m}^{2}\left(\theta-\frac{\sin 2 \theta}{2}\right)_{0}^{\pi}$
$=\frac{1}{2} I_{m}^{2}\left\{(\pi-0)-\frac{\sin 2 \pi-\sin \theta}{2}\right\}$
$=\frac{1}{2} I_{m}^{2}\{(\pi-0)-(0-0)\}$

$=\frac{\pi}{2} I_{m}{ }^{2}$
R.M.S. value $I_{r m s}=\sqrt{\frac{\text { Area of first half of squared wave }}{\text { Base }}}$

$$
=\sqrt{\frac{\pi I_{m}^{2}}{2 \pi}}=\sqrt{\frac{I_{m}^{2}}{2}}=0.707 I_{m}
$$

## R.M.S. Value of Half wave rectifier



Resultant Output Waveform
$\therefore \quad$ rms current, $\mathrm{I}=\sqrt{\frac{1}{2 \pi} \int_{0}^{\pi} \mathrm{i}^{2} \mathrm{~d} \theta}=\sqrt{\frac{1}{2 \pi} \int_{0}^{\pi} \mathrm{I}_{\mathrm{m}}{ }^{2} \sin ^{2} \theta \mathrm{~d} \theta}$

$$
=\sqrt{\frac{I_{m}^{2}}{4 \pi}} \int_{0}^{\pi}(1-\cos 2 \theta) d \theta=\sqrt{\frac{I_{m}^{2}}{4 \pi}\left(\theta-\frac{\sin 2 \theta}{2}\right)_{0}^{\pi}}
$$

$$
=\sqrt{\frac{\mathrm{I}_{\mathrm{m}}^{2}}{4 \pi}(\pi)}=\frac{\mathrm{I}_{\mathrm{m}}}{2}=0.5 \mathrm{I}_{\mathrm{m}}
$$

$\therefore \quad I=0.5 I_{m}$ for a half wave rectified a.c.

## Peak Factor

-Ratio of the Maximum value to the R.M.S. value of an alternating quantity

It is denoted by

$$
\mathrm{K}=\frac{\text { Maximum Value }}{\text { RMS Value }}
$$

Where $\mathrm{K}=1.414$

- Peak factor is also called the crest factor or amplitude factor.


## Form Factor

Form Factor is ratio of R.M.S. value to the average value of an alternating quantity. It is denoted by Kf

$$
\mathrm{K}_{\mathrm{f}}=\frac{\text { R.M.S. Value }}{\text { Average Value }}
$$

Where $K_{f}=1.11$

## Question For Practice

Q : An alternating voltage is given by $\mathrm{V}=282.8 \sin 377 \mathrm{t}$.
Find
(i) Frequency
(ii) RMS value
(iii) Average value
(iv) instantaneous value of voltage when t is 3 m sec.

## A.C. Circuit

- Circuits in which currents and voltages vary sinusoidally, ie vary with time are called A.C. circuits.
-All A.C. circuits are made up of combination of resistance $R$ , inductance $L$ and capacitance C.
-The circuit elements $R, L$ and $C$ are called circuit parameters.
- To study a general A.C. circuit it is necessary to consider the effect of each separately.


## Purely Resistive Circuit

- In purely resistive circuits, all the power is dissipated by resistors.
- Voltage and current in same phase.
$\mathrm{V}=\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t} . . . .$. (1)
$I=\frac{V}{R}=V_{m} \frac{\text { sin } \omega t}{R} \quad$ (Using Ohm's Law)
At $\omega t=90^{\circ}$, sin $\omega t=1$ \& current will be maximum.
$I_{m}=\frac{V_{m}}{R}$

$\mathrm{I}=\mathrm{I}_{\mathrm{m}} \sin \omega \mathrm{t}$...... (2)

For purely resistive circuits, the voltage and current are in phase with each other.

## Phasor and Wave Diagram of Purely Resistive Circuit

Average power consumed over a complete cycle
$\mathrm{P}=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}}$
$\mathrm{P}=\mathrm{VI}$


## Purely Inductive Circuit

- In purely inductive circuits, current lags the voltage by an angle of $90^{\circ}$
- No power consumed in pure inductive circuit

The alternating voltage is
$\mathrm{V}=\mathrm{V}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t}$
An alternating current i flowsthrough the inductance which induces an emf in it, given by

## $e=-L d i / d t$

This induced emf is equal and opposite of the applied voltage
$\mathrm{V}=-\mathrm{e}=-(-\mathrm{L}$ di/dt $)$
$\mathrm{V}=\mathrm{L}$ di/dt
$\mathrm{V}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t}=\mathrm{L} \mathrm{di} / \mathrm{dt}$
$\mathrm{di}=\frac{\mathrm{Vm} \operatorname{Sin} \omega \mathrm{t}}{L} \mathrm{dt}$
$\int d i=\int \frac{V \mathrm{~m} \operatorname{Sin} \omega \mathrm{t}}{L} \mathrm{dt}$
$\mathrm{i}=\frac{\mathrm{Vm}}{\omega L}(-\cos \omega \mathrm{t})$
$\mathrm{i}=\frac{\mathrm{Vm}}{\omega L} \operatorname{Sin}\left(\omega \mathrm{t}-90^{\circ}\right)$
$\mathrm{i}=\frac{\mathrm{Vm}}{X L} \operatorname{Sin}\left(\omega \mathrm{t}-90^{\circ}\right)$
when $\operatorname{Sin}\left(\omega t-90^{\circ}\right)=1$, value of current is maximum
$\mathrm{I}_{\mathrm{m}}=\frac{\mathrm{Vm}}{X L}$
Therefore $\mathrm{i}=\mathrm{I}_{\mathrm{m}} \operatorname{Sin}\left(\omega \mathrm{t}-90^{\circ}\right)$

## Phasor and Wave Diagram of Purely Inductive Circuit

Average power consumed over a complete cycle
$\mathrm{P}=$ zero


## Purely Capacitive Circuit

- In purely capacitive circuits, current leads the voltage by an angle of $90^{\circ}$
- No power consumed in pure capactive circuit
$\mathbf{v}=\mathbf{V}_{\mathrm{m}} \sin \omega \mathbf{t}$
The current in the circuit at any instant is
$i=d q / d t$
$i=d(C V) / d t=C d V / d t=C d\left(V_{m} \sin \omega t\right) / d t$
$i=\omega C V_{m} \cos \omega t=\omega C V_{m} \sin \left(\omega t+90^{\circ}\right)$
$\mathrm{i}=\frac{V_{m}}{1 / \omega c} \sin \left(\omega \mathrm{t}+90^{\circ}\right)$
$\mathbf{i}=\frac{V_{m}}{X_{C}} \operatorname{Sin}\left(\omega \mathbf{t}+90^{\circ}\right)$
At $\operatorname{Sin}\left(\omega t+90^{\circ}\right)=1$, value of current will be maximum
i.e. $\operatorname{Im}=\frac{V_{m}}{X_{C}}$, substituting in eqn(2)
$\mathbf{i}=\operatorname{lm} \sin \left(\omega t+90^{\circ}\right)$.
By comparing eqn (1) and (3),
Current leads the voltage by an angle of $90{ }^{\circ}$



## Phasor and Wave Diagram of Purely Capacitive Circuit

Average power consumed over a complete cycle

```
P= zero
```



## A.C. Series Circuit

- In actual practice, A.C. circuit contain two or more than two components ( $R, L, C$ ) connected in series or parallel.
- Three types of A.C. series circuits
- R-L series circuit
- R-C series circuit
- R-L-C series circuit


## R-L Series Circuit

This circuit contains a resistance $R$ and an inductance $L$ in series
Let $\mathrm{V}=$ supply voltage
$\mathrm{I}=$ circuit current
$V_{R}=$ voltage drop across $R=I R$
$V_{L}=$ voltage drop across $L=I X_{L}=2 \pi f L$
$\Phi_{\mathrm{L}}=$ phase angle between $I$ and $V$
Since $I$ is common to both elements $R$ and $L$, this is used as reference phasor.

The voltage $V_{R}$ is in phase with I and $V_{L}$ leads I by $90^{\circ}$.
The voltage $V$ is the phasor sum of $V_{R}$ and $V_{L}$


## Phasor Diagram of R-L Series Circuit

The triangle having $\mathrm{V}_{\mathrm{R}}, \mathrm{V}_{\mathrm{L}}$ and V as its sides is called voltage triangle for a series $\mathrm{R}-\mathrm{L}$ circuit.

The phase angle $\Phi_{\mathrm{L}}$ between the supply voltage V and the circuit current I is the angle between the hypotenuse and the side $\mathrm{V}_{\mathrm{R}}$.

It is seen that the current I is lagging behind the voltage $V$ in an $R-L$ circuit.
$\mathrm{V}^{2}=\mathrm{V}^{2}{ }_{\mathrm{R}}+\mathrm{V}^{2}{ }_{\mathrm{L}}$
$\mathrm{V}^{2}=(\mathrm{RI})^{2}+\left(\mathrm{X}_{\mathrm{L}} \mathrm{I}\right)^{2}$
$\mathrm{V}^{2} / \mathrm{I}^{2}=\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}{ }_{\mathrm{L}}$
$\mathrm{V} / \mathrm{I}=\sqrt{ }\left(\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}{ }_{\mathrm{L}}\right)$
$\mathrm{Z}_{\mathrm{L}}=\sqrt{ }\left(\mathrm{R}^{2}+\mathrm{X}_{\mathrm{L}}{ }_{\mathrm{L}}\right)$
$\mathrm{Z}_{\mathrm{L}}$ is called the impedance of a series R-L circuit

$Z_{L}=V / I$
$\mathrm{V}=\mathrm{Z}_{\mathrm{L}} \mathrm{I}$

## Impedance Triangle For R-L Series Circuit

- If the length of each side of the voltage triangle is divided by current I, the impedance triangle is obtained .
- The following results may be found from an impedance triangle for a series R-L circuit:
$Z_{L}=V\left(R^{2}+X^{2}\right)$
$R=Z_{L} \cos \Phi_{L}$
$X_{L}=Z_{L} \sin \Phi_{L}$
$\tan \Phi_{\mathrm{L}}=\mathrm{X}_{\mathrm{L}} / \mathrm{R}$



## Phasor and Wave Diagram of R-L Series Circuit

Average power consumed over a complete cycle
$\mathrm{P}=\mathrm{V}_{\mathrm{rms}} \operatorname{Irms} \operatorname{Cos} \phi$
$\mathrm{P}=\mathrm{VI} \operatorname{Cos} \phi$


## R-C Series Circuit

This circuit contains a resistance R and a capacitance C in series

Let $\mathrm{V}=$ supply voltage
$I=$ circuit current
$\mathrm{V}_{\mathrm{R}}=$ voltage drop across $\mathrm{R}=\mathrm{I} \mathrm{R}$
$\mathrm{V}_{\mathrm{c}}=$ voltage drop across $\mathrm{C}=\mathrm{IX} \mathrm{X}_{\mathrm{c}}=\mathrm{I} / 2 \pi \mathrm{fC}$
$\Phi_{c}=$ phase angle between I and V
The voltage $\mathrm{V}_{\mathrm{R}}$ is in phase with I and $\mathrm{V}_{\mathrm{c}}$ lags I by $90^{\circ}$.


The voltage sum is $V=V_{R}+V_{c}$

## Phasor Diagram of R-C Series Circuit

The triangle having $V_{R}, V_{C}$ and $V$ as its sides is called voltage triangle for a series $\mathrm{R}-\mathrm{C}$ circuit.

The phase angle $\Phi_{\mathrm{C}}$ between the supply voltage V and the circuit current $I$ is the angle between the hypotenuse and the side $V_{R}$.

It is seen that the current I is leading behind the voltage V in an $\mathrm{R}-\mathrm{C}$ circuit.
$\mathrm{V}^{2}=\mathrm{V}^{2}{ }_{\mathrm{R}}+\mathrm{V}^{2} \mathrm{C}$
$\mathrm{V}^{2}=(\mathrm{RI})^{2}+\left(\mathrm{X}_{\mathrm{C}}\right)^{2}$
$\mathrm{V}^{2} / \mathrm{I}^{2}=\mathrm{R}^{2}+\mathrm{X}^{2}{ }_{\mathrm{C}}$
$\mathrm{V} / \mathrm{I}=\sqrt{ }\left(\mathrm{R}^{2}+\mathrm{X}^{2}{ }_{\mathrm{C}}\right)$
$\mathrm{Z}_{\mathrm{C}}=\sqrt{ }\left(\mathrm{R}^{2}+\mathrm{X}^{2}{ }_{\mathrm{C}}\right)$
$\mathrm{Z}_{\mathrm{C}}$ is called the impedance of a series R-C circuit

$Z_{C}=V / I$
$\mathrm{V}=\mathrm{Z}_{\mathrm{C}} \mathrm{I}$

## Impedance Triangle For R-C Series Circuit

- If the length of each side of the voltage triangle is divided by current I, the impedance triangle is obtained.
- The following results may be found from an impedance triangle for a series R-C circuit.

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{c}}=\mathrm{V}\left(\mathrm{R}^{2}+\mathrm{X}_{\mathrm{c}}\right) \\
& \mathrm{R}=\mathrm{Z}_{\mathrm{c}} \cos \Phi_{\mathrm{c}} \\
& \mathrm{X}_{\mathrm{c}}=\mathrm{Z}_{\mathrm{c}} \sin \Phi_{\mathrm{c}} \\
& \tan \Phi_{\mathrm{c}}=\mathrm{X}_{\mathrm{c}} / \mathrm{R}
\end{aligned}
$$



## Phasor and Wave Diagram of R-C Series Circuit

Average power consumed over a complete cycle
$\mathrm{P}=\mathrm{V}_{\mathrm{rms}} \operatorname{Irms} \operatorname{Cos} \phi$
$\mathrm{P}=\mathrm{VI} \operatorname{Cos} \phi$


## R-L-C Series Circuit

- A circuit having R, L and C in series is called a R-L-Cseries circuit
- Current is used as reference phasor in series circuit since it is common to all the elements of circuit.
- There are four voltages
$V_{R}$ in phase with I
$\mathrm{V}_{\mathrm{L}}$ leading lby $90^{\circ}$
$V_{C}$ lagging Iby $90^{\circ}$

Total voltage $\mathrm{V}=\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\mathrm{L}}+\mathrm{V}_{\mathrm{C}}$

## Phasor Diagram of R-L-C Series Circuit

- $\mathrm{V}_{\mathrm{L}}$ and $\mathrm{V}_{\mathrm{C}}$ are in opp. directions and their resultant is their arithmetic difference.
- There are threepossible cases in series RLC circuit
a) $V_{L}<V_{c}$ i.e. $X_{L}<X_{c}$
b) $V_{L}>V_{c}$ i.e. $X_{L}>X_{c}$
c) $V_{L}=V_{c}$ i.e. $X_{L}=X_{c}$

When $X_{l}>X_{c}$, the circuit is predominantly Inductive.
Inductive circuits cause the current 'lag' the voltage.
$\mathrm{V}=\mathrm{I} \sqrt{ }\left[\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}\right]$
$\mathrm{Z}=\sqrt{ }\left[\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)^{2}\right]$

When XL < XC the circuit is predominately Capacitive. Capacitive circuits cause the current to 'lead' the voltage.

$$
\begin{aligned}
& \mathrm{V}=\mathrm{I} \sqrt{ }\left[\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{c}}-\mathrm{X}_{\mathrm{L}}\right)^{2}\right] \\
& \mathrm{Z}=\sqrt{ }\left[\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{c}}-\mathrm{X}_{\mathrm{L}}\right)^{2}\right]
\end{aligned}
$$

## Impedance Triangle For R-L-C Series Circuit

If the length of each side of a voltage triangle is divided by current $I$, the impedance triangle is obtained. The impedence triangle for series R-L-C circuit.

$X_{\llcorner }>X_{c}$

$X_{C}>X_{L}$

## Question For Practice

Q: A coil resistance $10 \Omega$ and inductance 114.7 mH is connected in series with capacitor of $159.16 \mu \mathrm{~F}$ across a $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply.

Calculate
(i) Inductive reactance
(ii) Capacitive reactance
(iii) Impedance
(iv) Current
(v) Voltage across coil and capacitor

## Resonance

- Resonance is a condition in an RLC circuit in which the capacitive and inductive reactance are equal in magnitude, thereby resulting in a purely resistive impedance.
- At resonance, the impedance consists only resistive component $R$.
- The value of current will be maximum since the total impedance is minimum.
- The voltage and current are in phase.
- Maximum power occurs at resonance since the power factor is unity
- Resonance circuits are useful for constructing filters and used in many application.


## Resonance Frequency

- Resonance frequency is the frequency where the condition of resonance occur.
-Also known as center frequency.

$$
\begin{aligned}
\omega_{\mathrm{o}} & =\frac{1}{\sqrt{\mathrm{LC}}} \mathrm{rad} / \mathrm{s} \\
f_{o} & =\frac{1}{2 \pi \sqrt{\mathrm{LC}}} \mathrm{~Hz}
\end{aligned}
$$

## Resonance Curve

- The curve obtained by plotting a graph between current and frequency is known as resonance curve or response curve .
- The current has a maximum value at resonance given by $I_{\max }=V / R$.
- The value of I decreases on either sides of the resonance



## THANK YOU

